X-ray and UV irradiation effects on Ce³⁺ ion doped in UV sensitive glass

Yutaka SHIMIZUGAWA^{*1}, Katsumi HANDA², Ichiro SAKAI²

¹Laboratory of Advanced Science and Technology for Industry, Himeji Institute of Technology

3-1-2 Kouto, Kamigori-cho, Ako-gun, Hyogo, 678-1205 Japan

²Ritsumeikan Univ., Kusatsu, Shiga 525-8577 Japan

Introduction

Cerium, Ag-doped Li₂O-Na₂O-K₂O-SiO₂-Al₂O₃ glass is used as UV-sensitive glass for chemical etching. When UV radiation irradiated on this glass, Ag⁺ ion is reduced to Ag atom. The role of Ce³⁺ ion in this glass is considered to be a sensitizer which sensitize the reduction of Ag⁺ ion. The mechanism of the sensitization is considered to be oxidation of Ce³⁺ ion. However the evidence of oxidation of Ce³⁺ ion has not been known yet.

The peak of x-ray absorption near edge structure (XANES) spectra of rare earth assigned to $2p \rightarrow 5d$ transition are separated by the valence. Based on this fact, Shimizugawa et al. showed that Eu^{2+} ion doped in borate glass converted to Eu^{3+} ion due to x-ray irradiation by Eu L_{III} XANES[1] and that Eu^{3+} ion and Sm³⁺ ion doped in aluminoborate glasses are reduced to Eu^{3+} ion and Sm³⁺ ion find the glass is photo-induced oxidation, L_{III} XANES study can reveal the mechanism of the sensitization. Therefore we studied this glass by Ce L_{III} XANES before and after x-ray or UV irradiation.

Experimental

UV sensitive glass $(17.84\text{Li}_2\text{O}-1.49\text{Na}_2\text{O}-2.52\text{K}_2\text{O}-75.86\text{SiO}_2-2.29\text{Al}_2\text{O}_3$, SA) doped with 0.1 mol% CeO₂ and 0.05 mol% Ag₂O was prepared by quenching melts in air. Plate samples were used for measurements.

Cerium L_{III} XANES spectra were measured in a fluorescence mod×e using a Si(111) double crystal monochromator at BL-9A. X-ray absorption data around the Ce L_{III} edge (5.723 keV) were collected at 301 energy points ranging from 5.643 keV to 5.793 keV before and after x-ray (5.730 keV) or UV (254 nm) irradiation for 30

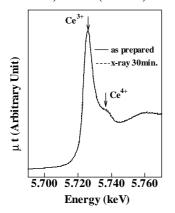


Fig.1 Ce L_{III} XANES spectra of Ce, Ag-doped SA glass before and after x-ray irradiation

minutes. Higher harmonics were removed by mirror. A mixture of nitrogen (75 %) and helium (25 %) was used in the I_0 ionization chamber and argon in the Lytle chamber. The scan time for one data-point was 1 second.

Results and Discussion

Cerium L_{III} XANES spectra of Ce, Ag-doped SA glass before and after x-ray irradiation are shown in Fig. 1. The peaks located at 5.726 keV and 5.736 keV are assignable to $2p \rightarrow 5d$ transition of Ce³⁺ ion and Ce⁴⁺ ion, respectively. [3] The peak at 5.736 keV becomes large by x-ray irradiation. It means that some Ce³⁺ ions doped in SA glass were converted into Ce⁴⁺ ions upon x-ray irradiation.

XANES spectra before and after UV irradiation in both edges are shown in Fig.2. Photo-oxidation of Ce^{3+} ion was also occurred by UV irradiation. Therefore photo-oxidation of Ce^{3+} ion should be the mechanism of mechanism of the sensitisation. In the case of UV irradiation, the change of Ce^{3+} ion to Ce^{4+} ion is much increased than that of x-ray irradiation. This fact shows that the energy of photon causing photo oxidation of trivalent ion may be close to that of UV light (254 nm = 4.88 eV).

References

[1] Y. Shimizugawa et al. J. Synchrotron Rad. 6, 624 (1999)

[2] Y. Shimizugawa et al. J. Synchrotron Rad. 8, 797 (2001)

[3] J. F. Herbst et al. Phys. Rev. B 26, 1689(1982)

* shimizug@lasti.himeji-tech.ac.jp

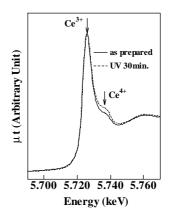


Fig.2 Ce L_{III} XANES spectra of Ce, Ag-doped SA glass before and after UV irradiation